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A surface model on compartmentalized spheres is studied by using the Monte Carlo simulation technique
with dynamical triangulations. We found that the model exhibits a variety of phases: The spherical phase, the
tubular phase, the planar phase, the wormlike planar phase, the wormlike long phase, the wormlike short phase,
and the collapsed phase. We also demonstrated that almost all phases are separated from their neighboring
phases by first-order transitions. Mechanical strength of the surface is given only by elastic skeletons, which
are the compartment boundaries, and therefore vertices diffuse freely inside the compartments. We confirm that
the cytoskeletal structure and the lateral diffusion of vertices are origins of such a variety of phases.
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I. INTRODUCTION

Biological membranes and synthetic polymer membranes
show a variety of shapes such as spherical, tubular, discoid,
cylindrical, and many others including starfish �1�. The shape
of membranes is partly understood numerically with a sur-
face model called a minimal model �2� and with the area
difference bilayer model �3,4�. External forces such as grav-
ity and flow fields make the surface shape change �5–7�; this
shape can also be influenced by thermal fluctuations �8–10�.
In fact, shape transformations, such as the prolate-oblate
transition driven by the thermal fluctuation, were experimen-
tally observed �8�. Although the shape of membranes seems
to have a nonequilibrium nature, the membrane shape should
be considered an equilibrium statistical mechanical phenom-
enon. The current understanding of the effects of thermal
fluctuations on the conformation and elastic properties of
membranes are reviewed in �10�.

A recent experimental study indicates that the shape of
membranes should be understood within the context of the
theory of phase transitions; the surface fluctuation transition
is accompanied by the collapsing transition in artificial mem-
branes �11�. Also, these two types of transitions were ob-
served in numerical studies �12,13� of the surface model of
Helfrich �14�, Polyakov �15�, and Kleinert �16�. Thus we
should remind ourselves that the shape transformation and
the surface fluctuations are two different phenomena. The
phenomena of surface fluctuations have been extensively
studied by statistical mechanics, �17–22�, however, the shape
transformations have not been extensively studied relative to
surface fluctuations. For this reason, we used the surface
model in �23� to examine the collapsing transition as a tran-
sition of shape transformations. We demonstrated that the
shape of a compartmentalized fluid surface model changes
due to thermal fluctuations. These results suggest that the
possible origins for a variety of membrane shapes are the
cytoskeletal structure and the fluidity of lipids in membranes.
Moreover, it was also suggested in �23� that the large variety

of shapes can be understood within the framework of a sur-
face model, which has a cytoskeleton.

We consider that the shape transformations of membranes
can be understood by assessing the cytoskeletal structure,
which has been considered a key component in the under-
standing of membranes physics �24–26�. The lateral diffu-
sion of lipids and/or proteins is constrained by cytoskeletons
�26�, and the so-called hop diffusion of molecules can be
simulated on the compartmentalized fluid surfaces �23�. The
constrained lateral diffusion reflects a nonhomogeneous
structure of membranes and is thought to play a role in driv-
ing shape transformations.

To make these considerations more convincing, we stud-
ied an other compartmentalized fluid surface model, which is
almost identical to the model in �23�. It is remarkable that a
small change in the model makes a large difference in the
multitude of surface shapes. The only difference between the
model in this article and Ref. �23� is junction elasticity; rigid
plates are assumed to be at the junctions in �23�, while nei-
ther two-dimensional elasticity nor rigid plates are assumed
in the model of this article. Both of the compartmentalized
models are nonhomogeneous because of the cytoskeletal
structures, as stated above; the surface strength of the com-
partment boundary is different from inside the compart-
ments, and moreover, the diffusion of vertices is confined to
the compartments.

II. MODEL

The compartmentalized structure is a sublattice on a tri-
angulated surface, which is constructed from the icosahe-
dron. By dividing the edges of the icosahedron into pieces,
we have a triangulated lattice of size N=10�2+2, which is
the total number of vertices. Then, we have a sublattice of
size NS=30m� in the N=10�2+2 lattice if m divides �. The
vertices in the sublattice include the junctions of the com-
partments on the N=10�2+2 lattice, and the total number of
junctions NJ is given by NJ=10m2+2. The total number of
links between the junctions is 3NJ−6, and each link contains
� /m vertices. Thus we have NS=30m�. The compartment*koibuchi@mech.ibaraki-ct.ac.jp
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size can be characterized by n=�i=1
��/m�−2i, which is the total

number of vertices in a compartment.
Figure 1�a� shows the starting configuration for Monte

Carlo simulations. The size of the surface is characterized by
two integers �� ,m�= �16,2�, and the size is given by
�N ,NS ,NJ�= �2562,960,42�, and n=21.

The model is defined by the Gaussian bond potential S1
and the one-dimensional bending energy S2, which are re-
spectively defined by

S1 = �
�ij�

�Xi − Xj�2, S2 = �
�ij�

�1 − ti · t j� , �1�

where Xi is the three-dimensional position of the vertex i and
ti is a unit tangent vector of the bond i. ��ij� in S1 is the sum
over all bonds �ij� on the lattice, and ��ij� in S2 is the sum
over all nearest neighbor bonds �ij� on the sublattice.

Tangent vectors at the junctions of coordination numbers
q=6 and q=5 are shown in Figs. 1�b� and 1�c�. The tangent
vectors t1 and t2 at a junction of coordination number q=6
give rise to a contribution 1− t1 · t2 to S2 with the weight of 1.
The remaining two inner-products of tangent vectors are
defined by 1− t1 · t2 at the q=6 vertices. On the contrary,
the tangent vectors t1, t2, and t3 at a junction with coordi-
nation number q=5 contribute 1− �t1 · �t2+ t3�� /2 to the bend-
ing energy with the weight of 1 /2. The remaining four inner-
products of tangent vectors are defined just like 1− �t1 · �t2

+ t3�� /2 at the q=5 vertices; this is the reason for the weight
1 /2 of the bending energy S2 at the q=5 junctions. Conse-
quently, the definition of the bending energy at the q=6 junc-
tions is almost identical to that at the q=5 junctions, whose
total number is only 12.

The partition function Z of the model is given by

Z = �
T
�� �

i=1

N

dXi exp�− S�X,T��,S�X,T� = S1 + bS2, �2�

where S�X ,T� is the Hamiltonian, and b�kT� is the bending
rigidity, which is a microscopic quantity and therefore, it is
not always identical to macroscopic bending rigidity. �T de-

notes all possible triangulations, which maintain the com-
partment boundary �=the sublattice bonds� unchanged.
���i=1

N dXi denotes the multiple three-dimensional integra-
tions under the constraint that the center of mass of the sur-
face is fixed.

III. MONTE CARLO TECHNIQUE

The integrations of the dynamical variables X and T are
performed by the canonical Monte Carlo simulation tech-
nique �27–31�. The three-dimensional random shift �X of X
generates a new position X�=X+X, which is accepted by the
probability min�1,exp�−�S��, where �S=S�new�−S�old�.
The vertices can be classified into three groups, specifically
the vertices inside the compartment, the vertices on the com-
partment boundary, and the vertices at the junctions. The
latter two groups of vertices are those that construct the sub-
lattice. The point �X is randomly chosen in a sphere and,
the radius of the sphere is fixed at the beginning of the
simulations so that the acceptance rate is equal to about 50%
in each group of vertices. The radius assumed for one
group of vertices is not always identical to those for the
other groups of vertices. The summation over T is performed
by the standard bond flip technique �29–31�, and therefore,
the acceptance rate for the flip is not fixed a priori, but
found to vary the approximate bracket by 70–75 %,
which is slightly dependent on b. We assume the surfaces
are of size �N ,NS ,NJ�= �5762,2160,92� and �N ,NS ,NJ�
= �10242,3840,162�, which correspond to integers �� ,m�
= �24,3� and �� ,m�= �32,4�. The total number of MCS
�Monte Carlo sweep� after the thermalization is about
1�108	1.5�108 for the N=5762 surface and 1.3�108

	2�108 for the N=10242 surface. The thermalization pro-
cess comprises about 1�108 MCS, which is sufficiently
large, in almost all cases.

IV. RESULTS OF SIMULATION

The shape of surfaces can be reflected in the mean square
size X2, which is defined by

(a)

t2t1

(b)

t3

t2

t1

(c)

FIG. 1. �Color online� �a� Starting configuration of surfaces of size �N ,NS ,NJ�= �2562,960,42�; thick lines denote a sublattice composed
of the linear chains and the junctions, �b� tangent vectors t1 and t2 at a vertex with coordination number q=6, which give rise to a
contribution 1− t1 · t2 to the bending energy with the weight of 1, and �c� tangent vectors t1, t2, and t3 at a vertex with coordination number
q=5 that contribute 1− �t1 · �t2+ t3�� /2 to the bending energy with the weight of 1 /2.
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X2 =
1

N
�

i

�Xi − X̄�2, X̄ =
1

N
�

i

Xi, �3�

where X̄ is the center of the surface. Figures 2�a� and 2�b�
show X2 versus b obtained at a relatively small b region
and at the whole b region, respectively. The vertical
dashed lines denote the phase boundaries where X2 discon-
tinuously changes. We have at least seven phases in
the region 0�b�240 on the surface of size �N ,NS ,NJ�
= �10242,3840,162�. We call the phases collapsed, wormlike
short, wormlike, wormlike planar, planar, tubular, and spheri-
cal. Almost all of the two-neighboring phases, except the
wormlike planar phase and the planar phase, seem to be con-
nected by a first-order transition, because X2 discontinuously
changes at the phase boundaries.

X2 in the wormlike planar phase of the N=10242 surface
is wildly fluctuating on the b axis; X2 at b=15 and those at
the phase boundary close to the planar phase are different
from the remaining X2 in the wormlike planar phase. X2 at
b=13 of the N=5762 surface also seems to be an anomalous
value. The surface shape at b=15 of the N=10242 surface
and at b=13 of the N=5762 surface are wormlike. We be-
lieve that the configuration was trapped in the potential mini-
mum corresponding to the wormlike long phase in the simu-
lations. The potential barriers separating the phases seem to
be low because the surface size is not sufficiently large, and
for this reason such anomalous behavior of X2 can be seen in
the wormlike planar phase. We must emphasize that the
anomalous behavior of X2 does not imply that the model is
ill-defined. In fact, the Hamiltonian, such as the bending en-
ergy S2, is not unstable and has a unique value corresponding
to the given value of b, even in the wormlike planar phase as
we will see later in this paper.

Snapshots of surfaces and their sections are shown in
Figs. 3�a�–3�e�, which were obtained in the collapsed phase,
the wormlike long phase, the planar phase, the tubular phase,
and the spherical phase, respectively. The surfaces and sur-
face sections were shown in the same scale. The self-
avoiding property �32–34� is not assumed in our model, and
therefore, the phase structure in the small b region seems

phantom. However, as we see in the snapshots, the phase
structure seems realistic in the large b region.

To examine the difference between the wormlike short
phase, the wormlike long phase, and the wormlike planar
phase, we show snapshots of skeletons in Figs. 4�a�–4�d�,
which were obtained in the wormlike short phase �Fig. 4�a��,
the wormlike long phase �Fig. 4�b��, and the wormlike planar
phase �Figs. 4�c� and 4�d��. All figures were drawn in the
same scale. From the snapshots in Figs. 4�c� and 4�d�, it is
observed that one part of the surface is wormlike and the
remaining part is planar in the wormlike planar surfaces. We
see from Figs. 4�c� and 4�d� that the size of planar section
varies depending on b in the wormlike planar phase; we see
the inflated parts are planar from their surface sections. It is
easy to understand that X2 is strongly dependent on the size
of the planar section. X2 also depends on the number of
planar parts; we see two planar parts at the two ends of the
surface in Fig. 4�d�. For this reason, X2 wildly fluctuates at
the phase boundary �b
35� between the wormlike planar
phase and the planar phase, as mentioned above.

The surface shape in the wormlike short phase is also
wormlike as we see in Fig. 4�a�, however, the thickness or
equivalently the longitudinal length of surface is slightly dif-
ferent from those of the surfaces in the wormlike long phase.
This difference is reflected in X2, and consequently, the
wormlike short phase is separated from the wormlike long
phase by the first-order transition.

The one-dimensional bending energy S2 /NS� versus b is
shown in Figs. 5�a� and 5�b�, where NS� is the total number of
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FIG. 2. Mean square size X2 vs b at �a� small b region b�20
and at �b� whole region b�240. The compartment size is given by
n=21, which is the total number of vertices in a compartment.

(a) (b) (c) (d) (e)

FIG. 3. �Color online� Snapshots of surfaces and the surface
sections of size �N ,NS ,NJ�= �10242,3840,162� obtained at �a� b
=5.3 �collapsed phase�, �b� b=10 �wormlike long phase�, �c� b
=100 �planar phase�, �d� b=205 �tubular phase�, and �e� b=210
�spherical phase�.

(a) (b) (c) (d)

FIG. 4. �Color online� Snapshots of skeletons obtained at �a� b
=6 �wormlike short phase�, �b� b=10 �wormlike long phase�,
�c� b=14 �wormlike planar phase�, and �d� b=35 �wormlike planar
phase�. The surface size is given by �N ,NS ,NJ�
= �10242,3840,162�.
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vertices where S2 is defined. The junctions of coordination
number q=6 �q=5� are counted 3 �2.5� times in NS� because
of the definition of S2 and, therefore NS� is given by NS�=NS
+2NJ−6, which is also written as NS�=10�2−60m2+2. The
vertical dashed lines in the figures denote the phase bound-
aries. We find a discontinuous change in S2 /NS� at the bound-
aries between the collapsed phase and the wormlike short
phase and at the boundary between the wormlike short phase
and the wormlike long phase. No discontinuous change can
be seen in S2 /NS� at any other phase boundaries.

We see no wild fluctuation of S2 /NS� in the wormlike pla-
nar phase in Figs. 5�a� and 5�b�. S2 /NS� smoothly vary even at
b=15 and at b
35, where X2 wildly fluctuates.

The two-dimensional bending energy is defined by

S3 = �
�ij�

�1 − ni · n j� , �4�

where ni is a unit normal vector of the triangle i. The surface
fluctuation can be reflected in S3, which is not included in the
Hamiltonian. Figures 6�a� and 6�b� show S3 /NB versus b,
where NB=3N−6 is the total number of bonds. Discontinu-
ous changes can be seen in S3 /NB at the boundary between
the wormlike short phase and the wormlike long phase, at the
boundary between the wormlike long phase and the worm-
like planar phase, at the boundary between the planar phase
and the tubular phase, and at the boundary between the tu-

bular phase and the spherical phase. The discontinuous
changes in S3 /NB are consistent to those in X2 in Figs. 2�a�
and 2�b�. Also, note that the anomalous spikes of S3 /NB at
b=15 and at b=35 correspond to the anomalous value or the
wild fluctuations of X2 mentioned above.

We have seen that at least one physical quantity discon-
tinuously changes at the phase boundaries, except the bound-
ary between the planar phase and the wormlike planar phase.
At this boundary, we see that no physical quantity discon-
tinuously changes although X2 anomalously fluctuated,
which was observed in Fig. 1�b�. Then, the discontinuous
nature of the transition at this boundary is not confirmed
from the numerical data in this paper. Therefore, we consider
that almost all phases, except the planar and the wormlike
planar phases, are separated from their neighboring phases
by first-order transitions.

The Gaussian bond potential S1 /N is expected to be
S1 /N
3 /2 because of the scale invariance of the partition
function. Figures 7�a� and 7�b� show that the expected rela-
tionship is almost satisfied. We find that the relationship is
satisfied in the region of low bending rigidity, where the
surfaces are almost collapsing. On the contrary, we find that
the relationship is not exactly satisfied in the region of high
bending rigidity, where the surfaces are inflated, although the
deviation is very small compared to the value itself.

V. SUMMARY AND CONCLUSION

To summarize the results, we have investigated a com-
partmentalized fluid surface model by using the canonical
MC simulation technique and found a variety of phases; the
spherical phase, the tubular phase, the planar phase, the
wormlike planar phase, the wormlike long phase, the worm-
like short phase, and the collapsed phase. Almost all two
neighboring phases are connected by first-order transitions.
The spherical phase and the tubular phase are connected by a
first-order transition, which is quite similar to the prolate-
oblate transition. Our results indicate that the variety of
membrane shapes and their transformations can be under-
stood in the nonhomogeneous model, which is characterized
by compartmentalization of fluidity of vertices and the cy-
toskeletal structure constructed on the conventional homoge-
neous surface model.
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FIG. 5. Bending energy S2 /NS� versus b at �a� small b region
b�20 and at �b� whole region b�240.
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small b region b�20 and at �b� whole region b�240.

5 10 15 20
1.49

1.5

1.51

(a) b

S
1/

N

N=10242

wormlike
planar

collapsed wormlike
long

wormlike
short

100 200
1.49

1.5

1.51

(b) b

S
1/

N

N=10242

spherical

tubularplanar

wormlike
planar

FIG. 7. Gaussian bond potential S1 /N vs b at �a� small b region
b�20 and at �b� whole region b�240.
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It is interesting to study the model by including the two-
dimensional bending energy in the Hamiltonian. The phase
structure in the thermodynamic limit and the dependence of
the phase structure on the compartment size remains to be
clarified.
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